

# Autour de l'acide ascorbique... Aspects cinétiques



- Valider une loi de vitesse
- Déterminer la valeur d'une constante de vitesse

#### 1- Présentation

L'acide ascorbique (ou acide oxo-3-gulofuranolactone) est un acide organique dont le caractère réducteur est utile dans les systèmes biologiques pour assurer une protection contre les oxydants. Le couple d'oxydoréduction auquel il appartient sera noté  $Asc/AscH_2$  (figure 1).

Structure possible de l'oxydant conjugué de l'acide ascorbique, noté A

Acide ascorbique  $AH_2$ 

Figure 1 – Espèces du couple d'oxydoréduction  $Asc/AscH_2$ 

Si l'acide ascorbique peut exister sous forme de deux énantiomères, seul l'acide L-ascorbique (autrement dit, la vitamine C) est présent dans les fruits et légumes frais. Le nom « ascorbique » provient de ses vertus anti-scorbut, maladie engendrée par une déficience en vitamine C.

#### Données:

- Potentiels standard à 25°C:
  - $[Fe(CN)_6]^{3-} (aq)/[Fe(CN)_6]^{4-} (aq) : E_1^o = 0.35 V$   $Asc(aq)/AscH_2(aq) : E_2^o = 0.13 V$
- Constantes d'acidité : l'acide ascorbique est un diacide, les constantes d'acidité des couples à 25 °C :

  - $\begin{array}{ll} \circ & AscH_2(aq)/AscH^-(aq): pK_{a,1} = 4,2 \\ \circ & AscH^-(aq)/Asc^{2-}\left(aq\right): pK_{a,2} = 11,6 \end{array}$

L'objectif de la manipulation proposée ici est de valider la loi de vitesse d'oxydation de l'acide ascorbique par les ions hexacyanoferrate(III)  $[Fe(CN)_6]^{3-}$ , au moyen d'un suivi spectrophotométrique.

La loi de vitesse postulée est de la forme :

$$v = k \cdot \frac{[AscH_2] \cdot [[Fe(CN)_6]^{3-}]}{[H_3O^+]}$$

En particulier, les valeurs des trois ordres partiels proposées dans cette loi devront être validées. La valeur de la constante de vitesse à la température du laboratoire sera déterminée.

## 2- Informations relatives à la sécurité et aux précautions d'utilisation

| Solution aqueuse de ferricyanure de potassium $K_3[Fe(CN)_6]$ | Provoque une sévère irritation des yeux. Toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme.  Se laver la peau soigneusement après manipulation. Éviter le rejet dans l'environnement. Porter un équipement de protection des yeux/ du visage. EN CAS DE CONTACT AVEC LES YEUX: Rincer avec précaution à l'eau pendant plusieurs minutes. Enlever les lentilles de contact si la victime en porte et si elles peuvent être facilement enlevées. Continuer à rincer. Si l'irritation oculaire persiste: consulter un médecin. Recueillir le produit répandu. |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solution diluée aqueuse<br>d'acide nitrique                   | Provoque des brûlures de la peau et des lésions oculaires graves.  Porter des gants, blouse et lunettes de protection.  EN CAS DE CONTACT AVEC LES YEUX: rincer avec précaution à l'eau pendant plusieurs minutes. Enlever les lentilles de contact si la victime en porte et si elles peuvent être facilement enlevées. Continuer à rincer. Appeler immédiatement un CENTRE ANTIPOISON ou un médecin.                                                                                                                                                                                     |

Les solutions contenant des complexes hexacyanoferrate doivent être récupérées dans des bidons spécifiques.



## 3- Matériel à disposition

- Pipettes jaugées : 10 mL, 20 mL et 25 mL.
- Burette graduée de 25 mL,
- Fioles jaugées de 100 mL,
- Béchers de 100 mL, 150 mL,
- Agitateur magnétique avec un barreau aimanté.
- Spectrophotomètre interfacé avec cuves.
- Petit matériel : propipette, agitateur en verre, ...

## 4- Proposition de script python pour la réalisation d'une régression linéaire (facultatif)

Les éventuelles régressions linéaires de ce TP peuvent être menées grâce au script modifiable accessible par le lien suivant :

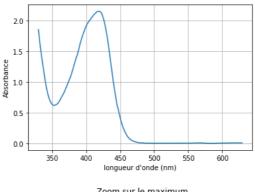
https://capytale2.ac-paris.fr/web/c/dd4f-763433/mln

(code: dd4f-763433)

Ce script est reproduit à la page suivante.

<u>Capacité numérique</u>: à l'aide d'un langage de programmation, évaluer les paramètres d'un modèle affine de régression linéaire.

```
#IMPORTATION BIBLIOTHEQUES
import matplotlib.pyplot as plt
import numpy as np
#SAISIE DES DONNES EXPERIMENTALES
#Saisir ici les données expérimentales
#(temps et absorbance pour ce TP)
L1 = np.array([4.44, 4.12, 3.85, 3.47, 2.94, 2.56, 2.04, 1.54, 1.24])
L2 = np.array([600,500,400,300,200,150,100,67,50])
#DEFINITION DES ABSCISSES ET ORDONNEES
#L'exemple proposé consiste à tracer 1/L2 en fonction de ln(L1)
#Les définitions de X et Y doivent être réadaptées
X = np.log(L1)
Y = 1/L2
#REGRESSION LINEAIRE
"""polyfit(X,Y,1)
   crée un tableau p = [a,b] avec :
   a : coefficient directeur et
  b : ordonnée à l'origine
  pour la modélisation de Y=f(X)
   par un polynôme d'ordre 1"""
p = np.polyfit(X,Y, 1)
print('Coefficient directeur : a = ', p[0])
print("Ordonnée à l'origine : b = ", p[1])
#CALCUL DES RESIDUS
#Un résidu est l'écart en ordonnée du point
#expérimental à la courbe modèle
res = Y - np.polyval(p,X)
#CREATION DU GRAPHIQUE
plt.figure()
plt.subplot(211)
plt.plot(X,Y,'+',label = 'points expérimentaux')
plt.plot(X, np.polyval(p,X), label ='modèle')
plt.title('Titre à définir')
plt.xlabel('X (unité ?)')
plt.ylabel('Y (unité ?)')
plt.legend()
plt.grid()
plt.subplot(212)
plt.plot(X,res,'o',label = 'résidus')
plt.axhline()
plt.xlabel('X (unité ?)')
plt.ylabel('résidus (unité ?)')
plt.legend()
plt.grid()
plt.show()
```


## 5- Partie expérimentale

L'oxydation de l'acide ascorbique  $H_2A$  par les ions hexacyanoferrate(III)  $[Fe(CN)_6]^{3-}$  est modélisée par la réaction d'équation :

$$AscH_2(aq) + 2\left[Fe(CN)_6\right]^{3-}(aq) + 2H_2O(\ell) = Asc(aq) + 2\left[Fe(CN)_6\right]^{4-}(aq) + 2H_3O^+(aq)$$

La transformation est supposée quasi-totale.

<u>Donnée</u>: Parmi les espèces présentes dans le milieu, seul l'ion hexacyanoferrate(III) absorbe dans le visible. Le spectre d'absorption d'une solution hexacyanoferrate(III) de potassium à  $4,00 \cdot 10^{-3} \ mol \cdot L^{-1}$  est reproduit fig. 2.



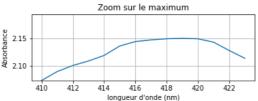



Figure 2 – Spectre d'absorption d'une solution hexacyanoferrate(III) de potassium à la concentration  $4,00\cdot 10^{-3}\ mol\cdot L^{-1}$ .

#### Solutions à disposition :

- Solution aqueuse d'acide ascorbique à la concentration  $1,0\cdot 10^{-2}\ mol\cdot L^{-1}$
- Solution aqueuse d'hexacyanoferrate(III) de potassium à la concentration  $4.0 \cdot 10^{-3} \ mol \cdot L^{-1}$ ,
- Solution aqueuse d'acide nitrique à  $1.0 \cdot 10^{-1} \ mol \cdot L^{-1}$ .

### Manipulations préliminaires :

- Régler le spectrophotomètre pour un suivi de la concentration en hexacyanoferrate(III) (longueur d'onde de travail, interfaçage avec l'ordinateur, durée entre deux mesures de 20 s, réglage du zéro).
- Préparer une solution diluée d'acide ascorbique à  $1 \cdot 10^{-3} \ mol \cdot L^{-1}$ .
- Préparer une solution diluée d'acide nitrique à  $2 \cdot 10^{-2} \ mol \cdot L^{-1}$ .

#### Expérience 1 :

- Dans un premier bécher, introduire :
  - 20 mL de la solution diluée d'acide ascorbique  $(1 \cdot 10^{-3} \ mol \cdot L^{-1})$ ,
  - 20 mL de la solution diluée d'acide nitrique  $(2 \cdot 10^{-2} \ mol \cdot L^{-1})$ .
- Dans un autre bécher, introduire 10~mL de solution d'hexacyanoferrate(III) de potassium à  $4.0 \cdot 10^{-3}~mol \cdot L^{-1}$ .
- Déclencher le chronomètre au moment de mélanger le contenu des béchers, homogénéiser rapidement mais efficacement. Procéder à la mesure de l'absorbance pendant 10 minutes.

#### Expérience 2 :

En tenant compte des conditions opératoires retenues pour la réalisation de l'expérience 1, préparer l'appel professeur.



#### **Appel**

Proposer un mélange (volumes et concentrations des 3 solutions) permettant de valider l'ordre partiel des ions hexacyanoferrate(III) dans la loi de vitesse.

Après échange avec le professeur, mettre en œuvre le protocole proposé (ou celui qui vous sera distribué).

### 6- Compte-rendu

- **Q1.** Montrer que l'oxydation de l'acide ascorbique par les ions hexacyanoferrate(III) peut raisonnablement être considérée quasi-totale.
- Q2. Justifier précisément votre choix de longueur d'onde de travail.
- **Q3.** Exploiter les résultats obtenus pour valider la loi de vitesse proposée. Expliciter dans le compte-rendu la démarche mise en œuvre ainsi que les calculs littéraux utiles. Critiquer éventuellement la modélisation mise en œuvre.
- Q4. Déterminer la valeur de la constante de vitesse à la température de réalisation de l'expérience.
- **Q5.** Aurait-il été possible de travailler avec un mélange initial entraînant une dégénérescence de l'ordre en ion hexacyanoferrate(III) pour réaliser le suivi cinétique de l'oxydation ?
- Q6. La loi de vitesse expérimentale est-elle compatible avec le mécanisme réactionnel suivant ?

$$AscH_{2} \leftrightarrows H^{+} + AscH^{-} \quad (K_{1})$$

$$[Fe(CN)_{6}]^{3-} + AscH^{-} \xrightarrow{k_{2}} [Fe(CN)_{6}]^{4-} + AscH^{\bullet}$$

$$AscH^{\bullet} \leftrightarrows H^{+} + Asc^{\bullet-} \quad (K_{2})$$

$$[Fe(CN)_{6}]^{3-} + Asc^{\bullet-} \xrightarrow{facile} [Fe(CN)_{6}]^{4-} + Asc$$

**Q7.** Justifier la stabilisation de l' Asc\* représenté ci-dessous.

## 7- À la fin de la séance

- Évacuer les solutions contenant des ions hexacyanoferrate dans une poubelle spécifique.
- La paillasse est remise en ordre.
- Bien se laver les mains avec du savon avant de quitter la salle.