

Autour de l'acide ascorbique... Aspects cinétiques (éléments de correction)

Analyse préalable de la loi de vitesse

La présence de plusieurs concentrations dans la loi de vitesse impose de privilégier des conditions expérimentales permettant de considérer certaines d'entre elles constantes (*méthode de la dégénérescence de l'ordre*) ou proportionnelles (*travail dans les proportions stæchiométriques*). Dans ces deux cas, la loi de vitesse peut être simplifiée afin de ne dépendre, en apparence, que de la concentration d'une seule espèce chimique.

$$v = k \cdot \frac{[H_2 A] \cdot [[Fe(CN)_6]^{3-}]}{[H_3 O^+]}$$

Analyse des mélanges initiaux proposés

$$H_2A(aq) + 2[Fe(CN)_6]^{3-}(aq) + 2H_2O(\ell) = A(aq) + 2[Fe(CN)_6]^{4-}(aq) + 2H_3O^+(aq)$$

Expérience 1: Travail dans les proportions stœchiométriques $\left(n_{H_2A} = \frac{n_{[Fe(CN)_6]^3}}{2}\right)$ et concentration en acide suffisamment importante pour être considérée constante $(n_{H^+} \gg \xi_{max})$.

Acide ascorbique	$n_{H_2A} = 2 \cdot 10^{-5} mol$	
Hexacyanoferrate(III)	$n_{[Fe(CN)_6]^{3-}} = 4 \cdot 10^{-5} mol$	$v = k_{app_1} \cdot [[Fe(CN)_6]^{3-}]^2$ $k_{app_1} = \frac{k}{2} \cdot \frac{1}{[H_3O^+]_1}$
Acide nitrique	$n_{H^+} = 4 \cdot 10^{-4} mol$	
Avancement maximal	$\xi_{max} = 2 \cdot 10^{-5} mol$	2 3 31

Expérience 2 : Dégénérescence de l'ordre en acide ascorbique et en acide nitrique :

$$n_{H_2A}=10~\frac{n_{[Fe(CN)_6]^{3^-}}}{2}\gg \xi_{max}~{
m et}~n_{H^+}\gg \xi_{max}$$

Acide ascorbique	$n_{H_2A} = 2 \cdot 10^{-4} mol$	
Hexacyanoferrate(III)	$n_{[Fe(CN)_6]^{3-}} = 4 \cdot 10^{-5} mol$	$v = k_{app_2} \cdot [[Fe(CN)_6]^{3-}]$
Acide nitrique	$n_{H^+} = 2 \cdot 10^{-4} mol$	$k_{app_2} = k \cdot \frac{[H_2 A]_2}{[H_3 O^+]_2}$
Avancement maximal	$\xi_{max} = 2 \cdot 10^{-5} mol$	- 3 -2

Dans le second protocole, l'utilisation d'une solution de nitrate de potassium permet de travailler à force ionique constante, le solvant étant alors mobilisé pour la solvatation des ions de manière comparable dans les deux expériences.

Méthode de suivi de la transformation

Les solutions d'hexacyanoferrate(III) de potassium sont colorées. Le complexe absorbe dans le visible et le maximum d'absorbance se situe à 418 nm d'après le spectre d'absorption fourni.

À condition de travailler en système dilué, la loi de Beer-Lambert permet de relier l'absorbance mesurée aux concentrations des espèces chimiques. Dans le cas où seul l'hexacyanoferrate(III) absorbe à cette longueur d'onde (ce que l'on va supposer), alors, l'absorbance est proportionnelle à la concentration de cette espèce chimique.

$$A = \left(\sum_{i} \varepsilon_{i}(\lambda) \cdot C_{i}\right) \cdot \ell$$

$$A \approx \varepsilon \cdot \ell \cdot [[Fe(CN)_6]^{3-}]$$

Où ε représente le coefficient d'absorption molaire de l'hexacyanoferrate(III) à 418 nm

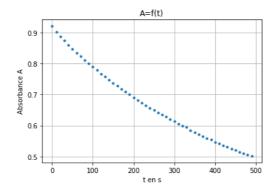
D'après le spectre fourni, pour une concentration $[[Fe(CN)_6]^{3-}] = 4 \cdot 10^{-3} \ mol \cdot L^{-1}$, au maximum d'absorbance, A(418nm) = 2,15 ce qui donne une valeur du coefficient d'absorption molaire :

$$\varepsilon = 5.4 \cdot 10^2 \ L \cdot mol^{-1} \cdot cm^{-1}$$

Réglage du spectrophotomètre

L'appareil est préalablement réglé :

- Réglage de la longueur d'onde de travail, ici 418 nm,
- Réglage du zéro pour prise en compte des contributions à l'absorbance de la cuve de travail et du solvant.


Travailler à la longueur d'onde du maximum d'absorption de l'espèce chimique permet de réduire les incertitudes de mesure :

- Un décalage de longueur d'onde par rapport à λ_{max} n'engendre pas de variation marquée de l'absorbance (tangente horizontale sur le spectre d'absorption),
- Le coefficient d'absorption molaire ε y est maximal ce qui permet d'engendrer des différences d'absorbance plus fortes pour des concentrations proches : $\Delta A = \varepsilon \ell \Delta C$.

Pendant la transformation, il n'est *a priori* pas utile de vider et remplir la cuve à plusieurs reprises. Si le mélange des solutions contenues dans les deux béchers a été correctement homogénéisé, les concentrations dans la cuve et dans le mélange sont identiques. La vitesse de réaction est alors la même dans la cuve et dans le mélange.

Exploitation des résultats de l'expérience 1

Le graphique montrant l'évolution de l'absorbance au cours du temps a l'allure suivante :

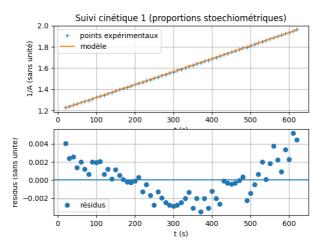
Loi d'évolution de la concentration

Dans l'hypothèse d'un ordre global 2, l'équation différentielle à intégrer est :

Définition de la vitesse de réaction : $v = -\frac{1}{2} \cdot \frac{d[{\it [Fe(CN)}_6]^3}^-]}{dt}$

Loi de vitesse simplifiée : $v = k_{app_1} \cdot [[Fe(CN)_6]^{3-}]^2$ $\left(k_{app_1} = \frac{k}{2[H^+]_1}\right)$

Équation différentielle : $-\frac{1}{2} \cdot \frac{d[[Fe(CN)_6]^{3-}]}{dt} = k_{app_1} \cdot [[Fe(CN)_6]^{3-}]^2$


Intégration : $\frac{1}{[[{\it Fe}({\it CN})_6]^{3-}]} = \frac{1}{[[{\it Fe}({\it CN})_6]^{3-}]_0} + 2k_{app_1} \cdot t$

Passage à l'absorbance : $\frac{1}{A} = \frac{1}{A_0} + \frac{2k_{app_1}}{\epsilon \ell} \cdot t$

Procédure de la validation d'un ordre global 2

Tracé de
$$\frac{1}{A} = f(t)$$

- → Le nuage de points paraît raisonnablement assimilable à une droite croissante,
- → Modélisation du nuage de points par une fonction affine :

Paramètres du modèle affine

Coefficient directeur : $a = 1.23 \cdot 10^{-3} s^{-1}$

Ordonnée à l'origine : b = 1,2

→ Analyse des résidus: les résidus montrent l'existence d'une tendance de courbure des points de mesure autour de la droite modèle ce qui devrait conduire à invalider le modèle d'ordre global 2. En revanche, comme l'expérience n'a été répétée qu'une seule fois et que la température de la solution dans la cuve a pu varier si celle-ci est restée longtemps dans le spectrophotomètre, on peut proposer, en première approximation, que le coefficient directeur obtenu par régression linéaire permet d'accéder à une estimation assez correcte de la constante de vitesse apparente :

$$\frac{2k_{app_1}}{\varepsilon\ell} = a \Rightarrow k_{app_1} = \frac{a\varepsilon\ell}{2} = 0.33 \ L \cdot mol^{-1} \cdot s^{-1}$$

Exploitation des résultats de l'expérience 2

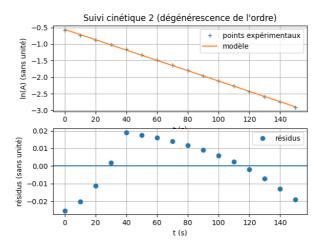
Loi d'évolution de la concentration

La dégénérescence de l'ordre en acide ascorbique conduit, après simplification de la loi de vitesse à l'équation différentielle suivante est :

Définition de la vitesse de réaction : $v = -\frac{1}{2} \cdot \frac{d\left[[Fe(CN)_6]^3 - \right]}{dt}$

Loi de vitesse simplifiée : $v = k_{app_2} \cdot [[Fe(CN)_6]^{3-}] \ \left(k_{app_2} = \frac{k}{[H^+]_2} [AscH_2]_2\right)$

Équation différentielle : $-\frac{1}{2} \cdot \frac{d[[Fe(CN)_6]^3]}{dt} = k_{app_2} \cdot [[Fe(CN)_6]^3]$


Intégration : $ln\left(\frac{\left[\left[Fe(CN)_{6}\right]^{3-}\right]}{\left[\left[Fe(CN)_{6}\right]^{3-}\right]_{0}}\right)=-2k_{app_{2}}\cdot t$

Passage à l'absorbance : $ln\left(rac{A}{A_0}
ight) = -2k_{app_2}\cdot t$

Procédure de la validation de l'ordre

Tracé de
$$ln\left(\frac{A}{A_0}\right) = f(t)$$

- → Le nuage de points paraît raisonnablement assimilable à une droite décroissante,
- → Modélisation du nuage de points par une fonction affine :

Paramètres du modèle affine

Coefficient directeur : $a = -1,56 \cdot 10^{-2} \ s^{-1}$

Ordonnée à l'origine : -0.56

→ Analyse des résidus : le caractère aléatoire des résidus n'est là aussi pas flagrant. Toutefois, avec les précautions précédentes, on peut utiliser le coefficient directeur pour évaluer la constante de vitesse :

$$2k_{app_2} = -a_2 \Rightarrow k_{app_2} = -\frac{a_2}{2}$$

$$k_{app_2} = -\frac{a_2}{2} = 7.8 \cdot 10^{-3} s^{-1}$$

Accès à l'ordre partiel de l'ion H^+

Les deux expériences ont fourni des valeurs de constantes de vitesse apparentes, toutes deux dépendantes de la concentration en ion H^+ . Leur exploitation permet d'accéder à l'ordre partiel de l'ion H^+ .

En admettant que l'on ne présuppose pas l'ordre partiel α de l'ion H^+ dans la loi de vitesse, les constantes apparentes de vitesse s'expriment ainsi :

$$k_{app_{1}} = \frac{k}{2[H^{+}]_{1}^{\alpha}}$$

$$k_{app_{2}} = \frac{k}{[H^{+}]_{2}^{\alpha}} [AscH_{2}]_{2}$$

Leur rapport conduit à l'expression :

$$\begin{split} \frac{k_{app2}}{k_{app1}} &= 2[AscH_2]_2 \cdot \left(\frac{[H^+]_1}{[H^+]_2}\right)^{\alpha} \\ ln\left(\frac{k_{app2}}{2[AscH_2]_2 k_{app1}}\right) &= \alpha \cdot ln\left(\frac{[H^+]_1}{[H^+]_2}\right) \end{split}$$

Enfin, comme $[H^+]_1 = 2[H^+]_2$:

$$\alpha = \frac{\ln\left(\frac{k_{app2}}{2[AscH_2]_2k_{app1}}\right)}{\ln\left(\frac{[H^+]_1}{[H^+]_2}\right)} = \frac{\ln\left(\frac{k_{app2}}{2[AscH_2]_2k_{app1}}\right)}{\ln(2)}$$
$$\alpha = \frac{\ln\left(\frac{7,8 \cdot 10^{-3}}{2 \times 4 \cdot 10^{-3} \times 0,33}\right)}{\ln(2)} = 1,6$$

Conclusion

À première vue, les ordres partiels des réactifs deux réactifs pourraient raisonnablement être pris égaux à 1. L'ordre partiel associé à l'ion H^+ paraît plus discutable.

Un peu de modération s'impose cependant avant de conclure de manière définitive :

- Une seule réalisation expérimentale a été menée (la répétition des mesures pourrait permettre de valider ou invalider cette loi de manière plus robuste),
- Le ratio initial des concentrations dans l'expérience 2 n'est peut-être pas suffisant pour proposer une dégénérescence de l'ordre.
- Aucune des modélisations linéaires réalisées de ne donne de résidus aléatoires.

Si l'on retient la loi de vitesse fournie par l'énoncé, les deux valeurs de constante de vitesse sont :

$$k_{exp1} = 5.3 \cdot 10^{-3} s^{-1}$$

 $k_{exp1} = 7.8 \cdot 10^{-3} s^{-1}$

Le meilleur estimateur de k est alors la moyenne des deux valeurs expérimentales :

$$k = 6.6 \cdot 10^{-3} s^{-1}$$

Q1 : Caractère quasi-total de la transformation

La constante thermodynamique d'équilibre de la réaction d'oxydation de l'acide ascorbique par l'ion hexacyanoferrate(III) s'exprime, à 25 °C :

$$log(K^{o}) = \frac{2}{0.06} \left(E^{o}_{[Fe(CN)_{6}]^{3-}/[Fe(CN)_{6}]^{4-}} - E^{o}_{Asc/AscH_{2}} \right)$$
$$log(K^{o}) = \frac{2}{0.06} (0.35-0.13)$$
$$K^{o} = 10^{7.3}$$

Ramenée à un électron échangé, la constante d'équilibre vaut $10^{3,7}$: la réaction paraît suffisamment favorable pour considérer la transformation quasi-totale.

Q5 : Aurait-on pu opérer avec un grand excès d'hexacyanoferrate(III) ?

Non, il est impossible de travailler en présence d'un grand excès d'hexacyanoferrate(III) par rapport à l'acide ascorbique si l'on souhaite utiliser la spectrophotométrie comme méthode de suivi. En effet, si la concentration des ions hexacyanoferrate(III) devait rester quasi-constante pendant la transformation, alors l'absorbance ne varierait pas, ce qui empêcherait toute exploitation de cette grandeur physique.

Q6 : Compatibilité avec le mécanisme réactionnel proposé

L'oxydation de l'anion ascorbate semble cinétiquement déterminante puisque l'autre oxydation est dite facile et les transferts de protons généralement fort rapides.

$$v = k_2[[Fe(CN)_6]^{3-}][AscH^-]$$

La relation à l'équilibre pour le transfert de proton conduit à $[AscH^-] = \frac{K_1[AcsH_2]}{[H^+]}$, puis :

$$v = k_2 K_1 \frac{[AcsH_2][[Fe(CN)_6]^{3-}]}{[H^+]}$$

Sous ces approximations, le mécanisme réactionnel pourrait être compatible avec la loi de vitesse fournie par l'énoncé (mais pas nécessairement avec la loi de vitesse déterminée expérimentalement).

Q7 : Stabilité du radical

Le radical présente une délocalisation stabilisante de l'électron célibataire.

Une flèche à mono-harpon est utilisée pour illustrer les mouvements d'un unique électron.