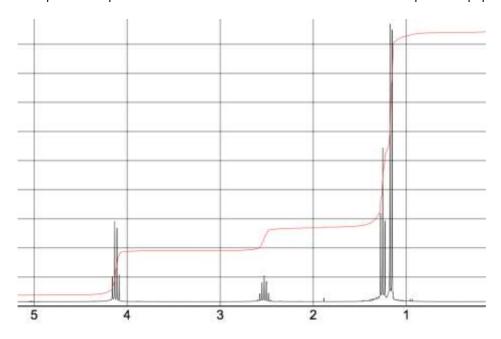


Orbitales moléculaires Chimie organique : PCSI, Spectroscopies, Mécanisme « A_N+E » Cinétique PCSI

Soyez concis dans vos réponses et aérez vos copies.

1. Diagnostic en cinétique chimique

Cette partie en annexe devra impérativement être abordée de façon à faire le point sur vos acquis de PCSI en matière de cinétique chimique.


N'oubliez pas de rendre l'annexe avec la copie.

2. Autour du mécanisme d'« addition nucléophile suivie d'élimination »

1 Formation d'un ester

1.1 Nommer les composés ci-après :

- 1.2 Indiquer l'équation de la réaction de formation de l'ester issu des deux composés précédents. Nommer l'ester obtenu.
- 1.3 Le spectre RMN ¹H reproduit ci-après est-il celui de l'ester formé ? Une table de données spectroscopiques figure en annexe.

1.4 Rappeler les conditions opératoires nécessaires à la préparation rapide et quantitative d'un ester à partir d'un acide carboxylique et d'un alcool primaire. Indiquer les raisons conduisant à ce choix.

1.5 Ecrire le mécanisme de formation d'un ester à partir d'un acide carboxylique et d'un alcool primaire. Justifier le double rôle joué par le milieu acide.

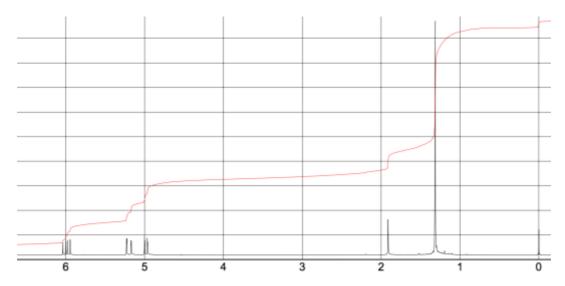
2 Deux étapes d'une synthèse du nadolol

Le nadolol est un bêta bloquant utilisé comme régulateur cardiaque.

2.1 Le 5,8-dihydro-1-naphtol est traité par l'anhydride éthanoïque (ou acétique) représenté ci-dessous :

L'anhydride acétique réagit avec ce composé comme il le ferait avec un alcool. Il se forme le produit *L*. Donner sa formule topologique.

On fait réagir le tétraoxyde d'osmium en présence d'eau oxygénée H₂O₂ sur L. On obtient M.


- **2.1.1** Donner la formule topologique de *M*.
- 2.1.2 Combien de stéréoisomères de configuration forme cette étape ? Les représenter en projection de CRAM.
- **2.1.3** Attribuer des stéréodescripteurs aux atomes de carbone asymétriques.
- **2.1.4** Quelle(s) relation(s) de stéréoisomérie existe-t-il entre les produits de la réaction ?
- **2.1.5** Cette réaction est-elle stéréosélective ?

3. Synthèse du línalol

Le **linalol** est un composé utilisé en parfumerie en remplacement de l'huile essentielle de lavande en raison de son odeur voisine. On propose d'étudier ici une synthèse possible de cette molécule, selon la séquence réactionnelle suivante :

1. Proposer une suite de réactions permettant la conversion de A en B.

2. Le spectre RMN ¹H du composé **B** est reproduit ci-dessous :

Justifier la multiplicité des signaux les moins déblindés.

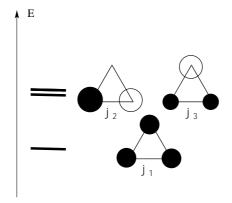
Peut-on prévoir la multiplicité des trois signaux les plus déblindés ?

- 3. a) Pourquoi travailler en milieu acide pour passer de C à D?
 - b) Identifier D et D'. Justifier la formation majoritaire de D.
- 4. Identifier le composé H.
- Écrire le mécanisme de l'étape I → J. Cette étape est-elle stéréosélective ? Stéréospécifique ? On rappellera la définition de ces deux termes.
- **6.** On effectue les spectres infrarouge et RMN ¹H du Linalol. Les données recueillies sont les suivantes :
 - Spectroscopie IR : Bandes notables à

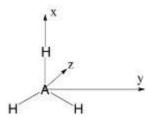
$$\sigma$$
 = 1642 cm⁻¹ σ = 1674 cm⁻¹ σ = 2930 cm⁻¹ σ = 3025 cm⁻¹

• Spectroscopie de RMN :

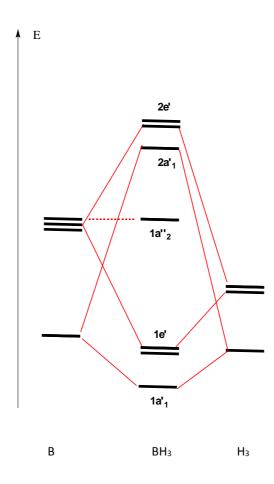
-			
Déplacement chimique δ (ppm)	Intégration	Multiplicité	Constante de couplage J (Hz)
a:1,27	3 H	Singulet	
b : 1,54	2 H	Triplet	7 Hz
c:1,60	3 H	Singulet	
d : 1,68	3 H	Singulet	
e : 2,11	2 H	Quadruplet	7 Hz
f: 2,23	1 H	Singulet élargi	
g:5,05	1 H	Doublet dédoublé	11 Hz, 2 Hz
h : 5,12	1 H	Triplet	7 Hz
i : 5,21	1 H	Doublet dédoublé	17 Hz, 2 Hz
j : 5,90	1 H	Doublet dédoublé	17 Hz, 11 Hz


- a) Proposer une attribution de liaison à chaque bande relevée en spectroscopie IR.
- b) En utilisant les données spectroscopiques fournies en annexe, attribuer un signal à chaque proton ou groupe de protons de la molécule. Pour répondre, le candidat devra impérativement recopier la molécule de linalol comme elle est représentée à la page précédente et affecter à chaque groupe de H de cette molécule, la lettre (a à j) associée au signal RMN qui lui correspond.

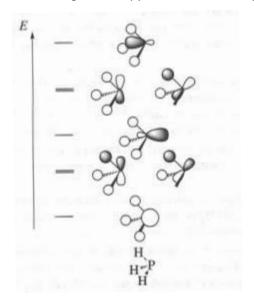
4. Diagramme d'OM de molécules AH3


On considère d'abord la **molécule de BH**³ trigonale plane. On se propose de construire ses orbitales moléculaires en appliquant la méthodologie de construction par combinaison d'orbitales de fragment.

Les énergies des orbitales du Bore sont de -14,7 eV (2s) et de - 5,7eV (2p).


- 1) Donner la configuration électronique fondamentale des atomes de cette molécule. Combien d'électrons de valence contiendra BH₃ ?
- 2) Donner une représentation de Lewis de BH₃.
- 3) Pour construire le diagramme orbitalaire de cette molécule, on utilise deux fragments :
 - un fragment H₃ triangulaire (voir diagramme donné ci-dessous)
 - et un fragment constitué par l'atome de bore qui viendra se placer au centre du triangle H₃.

Les axes de coordonnées imposés pour cette étude sont indiqués ci-dessous (A représente l'atome central (ici le bore) ; les axes (Ax) et (Ay) sont dans le plan de la feuille ; l'axe (Az) est orienté vers l'arrière de façon à avoir un repère orthonormé direct.



- **a.** Indiquer les propriétés de symétrie, d'antisymétrie ou de non-symétrie des orbitales de fragment par rapport aux opérations de symétrie suivantes :
 - i. Symétrie par rapport au plan (xy)
 - ii. Symétrie par rapport au plan (xz)
 - iii. Rotation de $2\pi/3$ par rapport à l'axe (Az)
- **b.** En déduire les orbitales de fragments susceptibles d'interagir.
- 4) Le diagramme d'interaction est donné ci-après. Le recopier sur votre copie et le compléter au moyen des électrons de valence et des représentations conventionnelles des orbitales moléculaires.

- 5) Donner la configuration électronique dans l'état fondamental de BH₃.
- 6) Quel est le site électrophile de BH₃ ? Est-ce cohérent avec les prévisions du modèle de Lewis ?

La phosphine (molécule PH₃) adopte quant à elle une géométrie pyramidale dont le diagramme d'OM est reproduit ci-dessous.

- 7) Donner la configuration électronique de PH₃.
- 8) PH₃ est un ligand classique de la chimie organométallique. Quelle orbitale rend compte des propriétés de la molécule en tant que ligand ? Quel atome de PH₃ se lie au métal ? Le modèle de Lewis apporte-t-il la même conclusion ?

4. Décomposition du DMSO

Le DMSO (ou diméthylsulfoxyde (CH₃)₂SO) est un solvant utilisé en synthèse organique. On étudie ici quelques-unes de ses propriétés.

- 1. Donner la structure de Lewis du DMSO.
- 2. Les angles valenciels autour de l'atome de soufre dans la molécule de DMSO valent 105,1 ° et 98 °. Attribuer ces angles à l'aide de la méthode VSEPR.
- 3. Déterminer les propriétés de ce solvant : polaire ou apolaire ; protique ou aprotique.
- 4. Parmi la liste de solvants suivants en proposer deux qui appartiennent à la même catégorie que le DMSO :

H₂O H₃C
$$\stackrel{\circ}{S}$$
 CH₃ H $\stackrel{\circ}{C}$ N(CH₃)₂ CH₃C=N CH₃OH $\stackrel{\circ}{H_3C}$ N(CH₃)₂ $\stackrel{\circ}{H_3C}$ N(CH₃)₂ $\stackrel{\circ}{H_3C}$ CC CH₃ eau DMSO DMF acétonitrile méthanol HMPA acétone

5. On indique la permittivité diélectrique de ces solvants. Choisir alors, sur la base de ce critère, le solvant le mieux adapté à la réalisation de la réaction suivante. Justifier soigneusement votre réponse.

6. Quels seront les ions les mieux solvatés par le DMSO : les anions ou les cations ? Justifier alors le choix du DMSO pour la réaction précédente.

A haute température (340 °C), le DMSO subit une réaction de décomposition thermique dont on écrit l'équation de réaction sous la forme :

Cette réaction a été étudiée par la méthode des vitesses initiales : dans le tableau ci-dessous la vitesse initiale v_0 de la réaction est donnée pour différentes valeurs de la concentration initiale en DMSO.

On suppose que la loi de vitesse s'écrit sous la forme v_0 = k.[DMSO] $_0^{\alpha}$: on cherche à déterminer l'ordre initial de la réaction α .

10 ³ .[DMSO] ₀ (mol.L ⁻¹)	2,0	4,0	6,0	8,0	10
10 ⁶ .v ₀ (mol.L ⁻¹ .s ⁻¹)	1,52	3,12	4,73	6,33	7,93

- 7. Proposer une méthode expérimentale permettant de mesures la vitesse initiale de disparition du DMSO.
- 8. Quelle méthode graphique permet déterminer l'ordre de la réaction sans avoir d'hypothèse à formuler sur la valeur de α ?
- **9.** A l'aide d'un graphe ou d'une régression linéaire, déterminer l'ordre initial α de la réaction et la constante de vitesse k. Le tableau de valeurs est exigé.

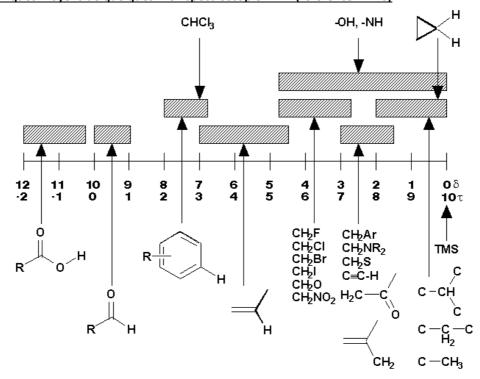
Pour décrire la réaction de décomposition thermique du DMSO selon l'équation de réaction : CH₃SOCH₃ = CH₄ + CH₂SO, le schéma réactionnel suivant a été proposé :

10. Donner la structure de Lewis de CH₃.

La vitesse de la réaction est définie comme la vitesse de formation du méthane.

11. En appliquant l'approximation des états quasi-stationnaires à CH3 et à CH2SOCH3, montrer que :

$$[CH_2SOCH_3] = \frac{k_1[CH_3SOCH_3]}{2k_4[CH_3]}$$


- 12. En négligeant v_4 devant v_2 et v_3 , exprimer v.
- 13. La réaction admet-elle un ordre ? Si oui, préciser lequel. Ce résultat est-il en accord avec l'étude expérimentale ?

Données spectroscopiques

Nombres d'onde caractéristiques des vibrations d'élongation en spectroscopie IR

liaison	nombre d'onde (cm ⁻¹)	intensité		
O-H alcool libre	3650-3580	variable ; bande fine		
O–H alcool lié	3400-3200	forte ; bande large		
C _{tri} —H (alcène)	3100-3000	moyenne		
C _{tet} -H (alcane)	3000-2850	forte		
C _{tri} –H aldéhyde	2900-2750	moyenne		
O–H acide carboxylique	3200-2500	variable ; bande large		
C=O ester	1750-1730 ^(*)	forte		
C=O aldéhyde et cétone	1740-1700 ^(*)	forte		
C=O acide carboxylique	1725-1680 ^(*)	forte		
C=O amide	1700-1630 ^(*)	forte		
C=C alcène	1680-1620 ^(*)	moyenne ou faible		
C=C cycle aromatique	1600-1450	variable ; 3 ou 4 bandes		

Déplacements chimiques moyens de quelques H en spectroscopie RMN (référence : TMS)

Constantes de couplage

Hydrogènes couplés	Constante de couplage J	Hydrogènes couplés	Constante de couplage J
H_C=C_H	J _{trans} : 13 – 18 Hz	C=C H	J _{gem} : 1 – 3 Hz
C=C H	J _{cis} : 7 – 14 Hz		

Diagnostic Cinétique Chimique

Au cours de la réaction : 2 $N_2O_5 = 4 NO_2 + O_2$, la vitesse de disparition de N_2O_5 vaut, à un instant t donné, 2.10^{-2} mol.L ⁻¹ .s ⁻¹ .
Que vaut la vitesse globale de la réaction à cette date ?
Que vaut la vitesse de formation de NO2 à cette date ?
Quelle différence faites-vous entre vitesse de réaction et loi de vitesse ?
Quelle uniterence raites-vous entre vitesse de reaction et ioi de vitesse :
L
Quel est le principe de la dégénérescence de l'ordre ?
Quel en est l'intérêt ?
Soient 2 processus élémentaires opposés A + B C (ctes de vitesse : k₁ pour le sens direct et k₁ pour le sens inverse).
Ecrire la loi de vitesse de la réaction en sens direct et celle de la réaction en sens inverse.
Lettie la 101 de vitesse de la reaction en sens direct et cene de la reaction en sens inverse.
Quelle relation mettant en jeu les constantes de vitesse peut-on écrire quand l'équilibre chimique est atteint ?

Soit une séquence de deux étapes (constantes de vitesse : k ₁ et k	₁ pour la première étape, k₂ pour la seconde) :
CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	CH ₃ H
$CH_3 - C - CI \longrightarrow CH_3 - CD^{\oplus} + CI^{\otimes}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CH ₃ CH ₃	CH ₃ H CH ₃
En quoi consiste l'AEQS ?	
A suculta annulation antil mannible divisitions antil a succession of	
A quelle condition est-il possible d'utiliser cette approximation p	our ce mecanisme ?
En déduire la loi de vitesse de formation de l'espèce (H ₃ C) ₃ C-OH ₂	
On suppose cette fois l'AEQS non applicable. Quelle aurait été la	
supposant que la première étape (k ₁ ,k ₋₁) est un équilibre rapide ?	
	(- M
Soit la réaction 2 NO + O ₂ → N ₂ O ₄ conduite dans un réacteur ferm	
0,7 mol de NO, 0,5 mol de O ₂ et 0,2 mol de N ₂ O ₄ . Quel est le réac	tit limitant ?
A un instant t, il reste 0,3 mol de NO. Quel est l'avancement de la	réaction à cet instant ? Quel est le taux d'avancement ?

On s'intéresse à la réaction en phase g					
volume V sont maintenus constants (T =		L). A l'éta	t initial, l'o	nceinte contient seulement	$n_0 = 1,2 \text{ mol de } N_2O_5.$
Calculer la pression initiale P ₀ dans l'end	einte.				
Définints tourne de dessi nécetion t					
Définir le temps de demi-réaction t _½ .					
Colordon la massissi sessit II - N. C. V.	linaka t				
Calculer la pression partielle en N₂O₅ à l	instant $t = t_{\frac{1}{2}}$.	1			
Calculer la pression totale dans l'encein	to à l'instant t	· - t _{1/}			
Calculer la pression totale dans l'encem	te a i ilistalit t	. – t½.			
					. 2.4
Soit la réaction 2 NO + O ₂ → N ₂ O ₄ . Lo					
différentes valeurs de concentrations in	itiales (en mn	nol.L ⁻¹) en	réactifs N) et O₂ sont rassemblées da	ns le tableau suivant.
	Expérience	[NO] ₀	[O ₂] ₀	V 0	
	1	1	1	2	
	2	2	1	8	
	3	2	2	16	
Calculer les ordres partiels et l'ordre glo	bal.				

T							
En déduire la valeur de la c	onstante de vitesse k						
Soit la réaction H ₂ O ₂ → H ₂ O) + ½ O ₂ . La concentra	ation en pérox	yde d'hyd	lrogène H	H₂O₂ a é	té mesu	rée à différentes dates.
l r		•			400	240	٦
	t (min)				120	240	4
	[H ₂ O ₂] (mol.L ⁻¹)	0,50 0,	40 0,	30 0	0,18	0,06	_
Bankun was Vander 4 and							
Montrer que l'ordre 1 conv	ient.						
Déterminer la valeur de la	constante de vitesse	k.					
Nommer et énoncer la loi t	raduisant la dénenda	nce de la con	stante de	vitesse a	vec la te	mnérat	ture
Troninci et enoncei la loi e	radaisant la dependa	ince de la com	otanic ac	vicesse a	vec ia te	pc.a.	
La constante de vitesse k d	e la réaction de déco	mposition de	l'éthanal a	été déte	erminée	à plusi	eurs températures.
			,	1	1		
	T (°C)	427	487	537	727	<u>'</u>	
	k (L.mol ⁻¹ .s ⁻¹)	0,0110	0,105	0,789	145	<u>; </u>	
Calculer l'énergie d'activati	ion de la réaction.						
Quel est l'ordre de la réact	ion ?						
1							